Background: The presence of orthodontic materials in the oral cavity represent a unique surface that can interact with bacteria, leading to pathogenic plaque formation and subsequent enamel demineralization, Streptococcus mutans play an important role in the initiation and progression of dental caries and they are considered the primary cause of bacteriological caries. The objective of this study was to investigate the effect of multiple factors including the type of arch wire, salivary coating, cross section, and wire thickness on the levels of mutans streptococci adherence. Materials and Methods: Two types of arch wire stainless steel and nickel titanium were selected using the following criteria: round and rectangular with gauges 0.014, 0.018, 0.016 × 0.022 and 0.019 × 0.0 25 inches which were subdivided into eight groups. Bacterial adhesion was quantified by a microbial culture technique and the number of adhesive bacteria were analyzed and counted after growth in culture for each group with and without saliva coating at 15 and 60 minutes. Detection of mutans streptococci by saliva-check Mutans test. Results: There was a significant difference between arch wire types in each time interval and the highest bacterial adhesion on the NiTi arch wires with rectangular cross section in the absence of saliva with extended incubation time. Conclusions: The adherence of mutans streptococci in saliva coated wires seems to be low. At increased incubation time, rectangular cross section arch wire showed an increased number of adhering bacteria with less effect on different gauges of the arch wire.
Select your language of interest to view the total content in your interested language