GET THE APP

Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus | Abstract
Logo

International Journal of Medical Research & Health Sciences (IJMRHS)
ISSN: 2319-5886 Indexed in: ESCI (Thomson Reuters)

Abstract

Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

Author(s):Suresh Mickymaray, Wael Alturaiki, Mohammed Saleh Al-Aboody, Premanathan Mariappan, Vijayakumar Rajenderan, Suliman A. Alsagaby, Umamageshwari Kalyanasundram and Abdulla A. Alarfajj

Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347), a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL) producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA). Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB) medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.


Select your language of interest to view the total content in your interested language

Archive
Scope Categories
  • Clinical Research
  • Epidemiology
  • Oncology
  • Biomedicine
  • Dentistry
  • Medical Education
  • Physiotherapy
  • Pulmonology
  • Nephrology
  • Gynaecology
  • Dermatology
  • Dermatoepidemiology
  • Otorhinolaryngology
  • Ophthalmology
  • Sexology
  • Osteology
  • Kinesiology
  • Neuroscience
  • Haematology
  • Psychology
  • Paediatrics
  • Angiology/Vascular Medicine
  • Critical care Medicine
  • Cardiology
  • Endocrinology
  • Gastroenterology
  • Infectious Diseases and Vaccinology
  • Hepatology
  • Geriatric Medicine
  • Bariatrics
  • Pharmacy and Nursing
  • Pharmacognosy and Phytochemistry
  • Radiobiology
  • Pharmacology
  • Toxicology
  • Clinical immunology
  • Clinical and Hospital Pharmacy
  • Cell Biology
  • Genomics and Proteomics
  • Pharmacogenomics
  • Bioinformatics and Biotechnology